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Abstract

Developing a method to formulate a damping matrix that represents the actual spatial distribution and mechanism of

damping of the dynamic system has been an elusive goal. The dynamic stiffness matrix (DSM)-based damping

identification method proposed by Lee and Kim is attractive and promising because it identifies the damping matrix from

the measured DSM without relying on any unfounded assumptions. However, in ensuing works it was found that damping

matrices identified from the method had unexpected forms and showed traces of large variance errors. The causes and

possible remedies of the problem are sought for in this work. The variance and leakage errors are identified as the major

sources of the problem, which are then related to system parameters through numerical and experimental simulations. An

improved experimental procedure is developed to reduce the effect of these errors in order to make the DSM-based

damping identification method a practical option.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Often the damping matrix is formulated by using an extremely simple model such as the viscous, structural,
or proportional damping model when the equation of motion of a dynamic system is formulated. Such simple
models were introduced mainly for mathematical convenience, and match only the overall energy loss effect,
ignoring the actual mechanism and spatial distribution of the damping in the system. Motivated by a desire to
formulate the damping matrix that correctly describes both the mechanism and spatial distribution of
damping, various approaches have been proposed. Many of these approaches use experimentally identified
modal parameters, frequencies, damping ratios and mode shape vectors, to find the damping matrix [1–11].
This requires modal parameters to be found first, which are then used to find the damping matrix. Because the
damping property has physically much smaller signature than the stiffness and inertia properties, the process
amplifies experimental errors involved with the prior step to ruin the damping matrix to be found.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

c viscous damping coefficient
C viscous damping matrix
Cexp experimental viscous damping matrix
dof degree of freedom
D structural damping matrix
DFT discrete Fourier transform
DSM dynamic stiffness matrix
f frequency (Hz)
FEA finite element analysis
FFT fast Fourier transform
FRF frequency response function
H(o) FRF matrix
Hexp(o) experimental FRF matrix
i mode number
I identity matrix
IFFT inverse fast Fourier transform
j complex term ¼

ffiffiffiffiffiffiffi
�1
p� �

k number of frequency points/stiffness
ki stiffness of ith element
K stiffness matrix
Kexp experimental stiffness matrix
L(o) generalized damping matrix
m mass
mi mass of ith element

M number of measurement points/modal
mass

M mass matrix
Mexp experimental mass matrix
MRIT multi-reference impact testing
MIMO multi-input–multi-output
Qr modal scaling factor for rth mode
r mode number
SD(o) dynamic stiffness matrix of analytical

model
SDexp
ðoÞ experimental dynamic stiffness matrix

SIMO single input–multi-output
SVD singular value decomposition
T sampling period
U(o) left-hand side matrix
V(o) right-hand side matrix
Df frequency increment (Hz)
R(o) singular value matrix
a proportionality constant
lr complex modal frequency for rth mode
x damping ratio
o circular frequency (rad/s)
w modal matrix
wr modal vector for rth mode
Xi undamped modal frequency of the ith

mode (rad/s)
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Some approaches were developed to formulate damping matrices directly from measured frequency
response functions (FRFs), which eliminated the need to rely on modal parameters [12–17]. Among them, the
procedure developed by Lee and Kim [17] obtained the damping matrix from the dynamic stiffness matrix
(DSM) by inverting the measured frequency response function matrix (FRM). The method developed by Lee
and Kim [17] can be summarized by three steps.

In the first step, measured FRFs are put into a matrix form as follows:

HexpðoÞ ¼

H11ðoÞ � � � H1M ðoÞ

..

. . .
. ..

.

HM1ðoÞ � � � HMM ðoÞ

2
664

3
775, (1)

where Hexp(o) is the measured FRF matrix, o is the circular frequency (rad/s) and M is the measurement
degrees of freedom (dofs). In the second step, dynamic stiffness matrix of the experimental model SD expðoÞ is
obtained by inverting Hexp(o):

SD expðoÞ ¼ HexpðoÞ
�1. (2)

The final step utilizes the fact that the imaginary part of the dynamic stiffness matrix, SD expðoÞ, represents
the energy loss property. That is, SD expðoÞ ¼ Kexp � o2Mexp þ jLexpðoÞ, whereMexp and Kexp are the mass and
stiffness matrices, j ¼

ffiffiffiffiffiffiffi
�1
p

, and Lexp(o) is a real valued generalized damping matrix. The subscript exp
indicates an experimentally obtained term. Obviously, Lexp(o) can be obtained as

LexpðoÞ ¼ Imag SDexp
ðoÞ

� �
. (3a)
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Mass and stiffness matrices are related with the dynamic stiffness matrix as follows:

�Mexpo2 þ Kexp ¼ Re SD expðoÞ
� �

. (3b)

At a given frequency, the magnitudes of the elements of Lexp(o) represent the form of the spatial
distribution of damping. The frequency function that defines each element of Lexp(o) represents the damping
mechanism of the system at the corresponding nodal point.

While the approach is very attractive because of its simplicity, practical difficulties have been encountered in
follow-on studies by Hylok [18] and Ozgen and Kim [19]. Hylok’s experimental work [18] showed the
identified damping matrix was highly susceptible to measurement errors, which was confirmed by Ozgen and
Kim [19]. The major objectives of this paper are to identify the causes of these measurement errors and
quantify them, and to develop an improved experimental procedure to enable obtaining a more accurate
damping matrix.
2. Effects of measurement errors

2.1. Previous experimental work

Fig. 1 shows the test object, an aluminum beam suspended by bungee cords to simulate a free–free beam
that was used by Hylok [18] to implement the dynamic stiffness matrix-based damping matrix identification.
A 6� 6 FRF matrix was obtained using single-axis accelerometers installed at 6 points along the longitudinal
center-line of the beam. The multi-reference impact testing (MRIT) [20] was used.

Measured FRFs are shown in Fig. 2, which form a spatial plot of the magnitudes of FRFs. The real part,
�Mexpo2 þ Kexp, and imaginary part, Lexp(o), of the dynamic stiffness matrix obtained by inverting the
experimental FRF matrix are shown in Figs. 3 and 4 respectively. The imaginary part of the dynamic stiffness
matrix in Fig. 4 is the spatial plot of the damping effect.

Compared to the FRFs shown in Fig. 2, the elements of the dynamic stiffness matrix in Figs. 3 and 4 show
much more scattered patterns, which indicates that measurement errors influence dynamic stiffness matrix
much more than FRFs. It can also be seen from the comparison of Figs. 3 and 4, especially in diagonal
elements, that the imaginary part is more scattered than the real part. This can be explained by the fact that
the imaginary part that represents the damping effect has much smaller signal to noise (S/N) ratio because its
magnitude is much smaller than that of the real part that represents the mass and stiffness effect.
Fig. 1. Experimental setup, suspended aluminum beam used in Ref. [18].
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Fig. 2. Spatial plot of the experimental FRF matrix of Hylok’s aluminum beam used in Ref. [18].
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Fig. 3. Spatial plot of the real part of the experimental dynamic stiffness matrix of Hylok’s aluminum beam used in Ref. [18].
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Fig. 4. Spatial plot of the imaginary part of the experimental dynamic stiffness matrix of Hylok’s aluminum beam used in Ref. [18].
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Fig. 4 shows that all diagonal elements of the damping matrix Lexp(o) are negative valued in a wide frequency
range. This indicates that the damping mechanism creates energy rather than dissipating, which is obviously not
possible, therefore must be a result of a measurement error. The variance error does not explain this phenomenon,
which leads to the hypothesis that the identified damping matrix must be influenced by a bias type error.

In general, bias errors in FRF measurements are associated with the alias effect, system nonlinearity,
external disturbances (e.g., unmeasured forces) and the leakage error [21]. The alias error is a less likely source
because the data was acquired using an anti-aliasing filter. Nonlinearity is also not a possibility either because
of the simplicity of the test structure and low level of the excitation. Therefore, the leakage is considered a
more likely source of the bias error.

The exponential window was not used to reduce the leakage error in Hylok’s work [18], which used the impact
testing because it would have introduced artificial damping effects [22], thus would have ruined the purpose of
testing, identification of the damping. Therefore, the FRFs used were quite possibly contaminated by relatively
large leakage errors. Next, we study the effects of variance type random error and leakage error separately to
understand how they influence the damping matrix identified by the dynamic stiffness matrix method.

2.2. Effect of variance type measurement error

2.2.1. Numerical study of the effect of the variance type error

A 4 dof lumped parameter system shown in Fig. 5 is used to study the effect of variance type error on the
identified damping matrix. The system parameters are defined as k1 ¼ k2 ¼ k3 ¼ k4 ¼ 2� 105N/m, and
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Fig. 5. Lumped parameter system with 4 dofs.

Table 1

Original viscous damping matrix (N s/m)

17.2 �4.9 �0.9 �0.4

�4.9 16.3 �5.4 �1.3

�0.9 �5.4 15.8 �6.3

�0.4 �1.3 �6.3 10.9
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m1 ¼ m2 ¼ m3 ¼ m4 ¼ 1 kg. A viscous damping matrix is used which is constructed so that all four modes of
the system have a damping ratio of 2% (see Table 1).

Sixteen FRFs are calculated from the model, to which random noises of three different levels, 0.01%, 0.1%
and 1% of the dynamic range of the signal are added. These contaminated FRFs are considered as the
experimental FRFs. The dynamic stiffness matrix is obtained by inverting the experimental FRF matrix. The
imaginary part of the dynamic stiffness matrix is the damping matrix Lexp(o).

Figs. 6(a) and (b) show the magnitude of the fourth diagonal element of the damping matrix and
FRF matrix when a 0.01% noise is added. While the FRF shows little trace of the noise, the dynamic
stiffness matrix is affected significantly by the noise. Because the exact damping matrix is oC, the noise-free
damping matrix plotted as a function of frequency should be a straight line. As it is seen in Fig. 6(a),
the experimental result is quite scattered around a straight line. This indicates that a curve fitting may
be applied to the damping matrix Lexp(o) identified from the dynamic stiffness matrix to eliminate large
frequency point-to-point variations. For the viscous damping case, the curve fitting becomes a linear
regression [17] as follows:

C ¼

o1I

o2I

..

.

okI

2
66664

3
77775

þ

kM�M

Imag Hexpðo1Þ
�1

� �
Imag Hexpðo2Þ

�1
� �

..

.

Imag HexpðokÞ
�1

� �

2
6666664

3
7777775

kM�M

, (4)

where ‘‘+’’ represents the pseudo-inverse of the matrix, I is the identity matrix, and k is the number of
frequency points used in the regression. In general, a polynomial curve fitting may be applied to each element
of Lexp(o) to obtain the expression of the damping matrix as a function of frequency.

Table 2(a) shows the damping matrix obtained by applying the linear regression (Eq. (4)) to the 0.01% noise
case. The identified damping matrix is in a good agreement with the original damping matrix. When the noise
level is increased to 0.1%, the plots of the imaginary part of the dynamic stiffness matrix and FRF are given in
Figs. 6(c) and (d). The damping matrix is identified in a significantly more scattered form. The C matrix
identified by Eq. (4) shown in Table 2(b) contains large errors. When the noise level is increased to 1%, which
is much higher than in typical measured FRFs (see Fig. 6(e)), the noise is almost the same level as the damping
ratio, a situation where the object of identification and the noise are similar sized. As expected, the result is
completely corrupted as seen in the dynamic stiffness matrix (Fig. 6(f)) and the identified damping matrix
(Table 2(c)).
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Table 2

Identified viscous damping matrices (N s/m)

(a) 0.01% error (b) 0.1% error (c) 1% error

17.3 �4.7 �0.9 �0.4 18.5 �3.6 �2.5 �1.5 6.8 4.5 �13.5 6.7

�4.9 16.3 �5.3 �1.3 �4.3 16.8 �5.8 �3.3 �6.6 7.2 4.9 �1.3

�0.6 �5.3 16.1 �6.2 �2.2 �2.4 15.5 �6.3 �9.5 �6.8 17.9 �19.3

�0.5 �1.0 �6.2 10.9 �2.2 �1.1 �4.3 12.5 0.7 7.3 �6.6 5.9

G.O. Ozgen, J.H. Kim / Journal of Sound and Vibration 320 (2009) 60–8366
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2.2.2. Theoretical study of the effect of the variance type error

We consider the FRF matrix of a linear, time-invariant and viscously damped system described in terms of
its modal parameters:

HðoÞ ¼
Xn

r¼1

Qrwrw
T
r

ðjo� lrÞ
þ

Q�r w
�
r w
�
r
T

ðjo� l�r Þ
, (5)

where wr is the modal vector, complex valued in general, Qr is the modal scaling factor, and lr is the complex
modal frequency of the rth mode. The FRF matrix can also be written in an alternative form utilizing the
singular value decomposition (SVD) [23] as follows:

HðoÞ ¼ UðoÞRðoÞVðoÞ, (6)

where R(o) is a diagonal matrix called the singular value matrix, and U(o) and V(o) are unitary matrices.
Each diagonal element of R(o) represents the contribution of the corresponding column vectors of U(o) and
V(o) to the FRF matrix.

Because the dynamic stiffness matrix is the inverse of the FRF matrix, the dynamic stiffness matrix is [18]

SDðoÞ ¼ VðoÞ
1

RðoÞ
UðoÞH . (7)

The singular value decomposition (SVD) and modal parameters are directly related only if the system has a
uniform, diagonal mass matrix and a proportional damping matrix. Such a system will be considered in this
section to study the effect of variance type errors. We consider that the mass matrix is

~M ¼ aI. (8)

Since modal vectors of such a system are real valued and orthogonal to each other, a direct comparison of
the FRF in the singular value decomposition and the mode superposition forms becomes possible. First,
Eq. (5) is rewritten as

~HðoÞ ¼
XN

r¼1

~wr
~w
T

r

~Qr

ðjo� lrÞ
þ

~Q
�

r

ðjo� l�r Þ

" #
, (80)

which is in a matrix form:

~HðoÞ ¼ ~w

~Q1

ðjo� l1Þ
þ

~Q
�

1

ðjo� l�1Þ
� � � 0 � � � 0

..

. . .
. ..

. ..
.

0
~Qr

ðjo� lrÞ
þ

~Q
�

r

ðjo� l�r Þ
� � � 0

..

. ..
. . .

. ..
.

0 � � � 0 � � �
~QN

ðjo� lN Þ
þ

~Q
�

N

ðjo� l�NÞ

2
6666666666666664

3
7777777777777775

~w
T
. (9)

Comparing Eqs. (6) and (9), SVD and modal parameters are related as follows:

RðoÞ /

~Q1

ðjo� l1Þ
þ

~Q
�

1

ðjo� l�1Þ
� � � 0 � � � 0

..

. . .
. ..

. ..
.

0 � � �
~Qr

ðjo� lrÞ
þ

~Q
�

r

ðjo� l�r Þ
� � � 0

..

. ..
. . .

. ..
.

0 � � � 0 � � �
~QN

ðjo� lNÞ
þ

~Q
�

N

ðjo� l�N Þ

2
6666666666666664

3
7777777777777775

: (10)
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Also,

UðoÞ;VðoÞ / ~w. (11)

Examining Eqs. (6) and (7) in conjunction with Eqs. (10) and (11), it is realized that the mode contributing
the least to the FRFs, which therefore has the worst S/N ratio, contributes the most to the dynamic stiffness
matrix. In other words, the effect of the measurement noise in the FRF matrix will be highly amplified in the
dynamic stiffness matrix because it is dominated by weakest modes. This explains why the dynamic stiffness
matrix is tainted much more easily by noise than the FRF matrix; therefore difficult to obtain accurately.
2.2.3. Variance error analysis with SVD

Figs. 7 and 8 show the singular values of the FRF and dynamic stiffness matrices of the 4 dof system in
Fig. 5 with 0.01% noise. As it is seen in Fig. 7, the lowest two singular values of the FRF matrix are most
contaminated throughout the entire frequency range. The contribution of these small singular values becomes
very large to the dynamic stiffness matrix as shown in Fig. 8, indicating that the variance noise is amplified in
the dynamic stiffness matrix.

The above discussion suggests that reducing the number of singular values will reduce the noise effect in the
dynamic stiffness matrix. We consider the dynamic stiffness matrix obtained from a model reduced to a 2 dof
system by taking the 2nd and 4th dofs of the original 4 dof model. The singular values of the FRF matrix of
the 2 dof reduced model with 0.01% noise are plotted in Fig. 9. Fig. 10(a) shows the second diagonal element
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of damping matrix obtained from the 2 dof system, which shows a significant improvement compared to the
fourth diagonal element of the damping matrix obtained from the original 4 dof system (see Fig. 10(b)).

In practice, reducing the number of singular values is achieved by decreasing the number experimental dofs,
i.e. eliminating some of the dofs, which results in decrease of the size of the dynamic stiffness matrix. While
using fewer dofs reduces the error in the dynamic stiffness matrix, it has the obvious disadvantage of reducing
the spatial resolution of the experimental model, which may cause that modes in the high frequency range
cannot be described. This issue is also discussed as ‘‘model incompleteness’’ by Berman [24–26], and Ozgen
and Kim [27,28]. In Refs. [27,28], it is also shown that beyond a certain limiting frequency, the dynamic
stiffness matrix obtained from an incomplete reduced model cannot be represented by constant mass and
stiffness matrices. Around and beyond this particular frequency limit, it is not possible to represent the system
by the reduced experimental model. This limiting frequency has also been related to the lowest anti-resonance
frequency observed in the singular value plot of the FRF matrix of the reduced model [28]. In the current case,
this frequency is around 70Hz as seen in the singular value plot of the FRF matrix of the 2 dof reduced model
(Fig. 9). To avoid the problem of incompleteness, the identified damping of the 4 and 2 dof models are
compared in the frequency range sufficiently lower than the limiting frequency, between 0 and 25Hz, as seen in
Fig. 10.

When applying the dynamic stiffness matrix-based damping identification method, the experimental dofs
will have to be selected for a best compromise among the needs for the accuracy of the damping identification,
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frequency range and the spatial resolution. This problem can be alleviated to some extent by employing more
accurate instrumentation to improve the S/N ratio thus allowing the use of more dofs, and also by adopting a
hybrid modeling approach which combines the identified damping matrix of a small number of dofs and the
mass and stiffness matrix of much larger dofs formulated experimentally or analytically. The latter requires a
procedure to expand the damping matrix, which was reported in Ref. [28].
2.3. Analysis of leakage error

2.3.1. Simulating the leakage error with a numerical model

The leakage error occurs due to the truncation of the time signal [29,30]. The effect of the leakage error can
be studied by introducing the error numerically to the FRFs by the following procedure.
(1)
 Analytic FRFs of the model are calculated from the theoretical model.

(2)
 The excitation force applied at a particular dof is defined in a random (to simulate random test) or

impulsive input (to simulate impact test) in the time domain, and transformed to the frequency domain by
applying the fast Fourier transform (FFT).
(3)
 The response at each dof is calculated in the frequency domain by multiplying the analytic FRF and the
force spectrum. In order to be consistent with typical FRF measurement procedures, acceleration
responses are used.
(4)
 The time histories of the acceleration response and force are obtained by applying the inverse FFT (IFFT)
to the response and force spectra.
(5)
 The force and acceleration response data are re-sampled using a slightly smaller block size than the
original one, which are transformed back to the frequency domain using FFT. These are numerically
altered spectra which include the leakage effect.
(6)
 The FRF with leakage effect is calculated using H1 FRF estimation technique [21] using the altered
response and force spectra.
(7)
 The above steps are repeated for all dof, which provides a leakage contaminated FRF matrix.
Using these leakage error added analytical FRFs, the effect of the leakage error can be studied independent
of all other effects. In our numerical scheme, we start with the discrete spectra of the response and force in the
frequency domain. The inverse FFT is applied to these spectra to obtain time-domain force and response
signals, which are assumed to be the signals with no leakage. Then, we change the number of data points,
effectively changing the sampling period, which causes the truncation in the time domain.
2.3.2. Examples

We first consider a 6 dof lumped parameter system shown in Fig. 11. The system parameters are defined as
k ¼ 1.0� 105N/m, and m ¼ 1.0 kg. The viscous damping matrix is taken as C ¼ 5� 10�5K, which
corresponds to modal damping ratios of 0.41%, 0.79%, 1.12%, 1.37%, 1.53%, an average modal damping
ratio of 1.04%. The general damping matrix is L(o) ¼ oC.

The number of dofs and the boundary conditions of this numerical example are chosen to resemble the
experimental model of the aluminum beam tested by Hylok [18]. In order to simulate an impact test case in our
numerical example, the force time history is chosen as an impulse function. The frequency range is selected to
include all six modes of the system.
1 2 3 4 5 6

k

c

k

c

k

c

k

c

k

c

Fig. 11. Lumped parameter model with 6 dofs.
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The spatial plot of the imaginary part of the dynamic stiffness matrix obtained by using the leakage
contaminated FRFs is shown in Fig. 12. It is clearly seen that the diagonal elements of the damping matrix
L(o) become negative in a wide frequency range as it was observed in experimental results (see Fig. 4).
Figs. 13(a) and (b) compare the first diagonal elements of the experimentally identified damping matrix shown
in Fig. 4 with the damping matrix identified from the numerical model in Fig. 12. Fig. 14 compares the
singular values of the FRF matrix of the theoretical model in Fig. 11 obtained with and without the simulated
leakage effect. It is seen that the leakage error affects the singular values in the lower frequency range
significantly. This observation supports the hypothesis that the leakage error is the main source of the bias
error in the dynamic stiffness matrix-based damping identification.

In order to further support our findings, the leakage error was introduced to FRFs obtained from a finite
element analysis (FEA) model. This model was correlated with the aluminum beam used by Hylok [18] in an
approximate sense by matching FRF amplitudes and resonant frequencies obtained from the model with those
from the test model. In addition to leakage error, a small level of variance error was introduced into the FRFs
obtained from the FEA model. The spatial plot of the damping matrix obtained from the FEA model is shown
in Fig. 15. It can be seen that the distortions in this damping matrix caused by the simulated leakage and
variance errors resemble the distortions observed in Fig. 4 obtained from the experimental model. This further
supports the hypothesis that in the identified damping the leakage error distorts the envelope and the random
error makes the data points scattered.
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3. Practical feasibility of the dynamic stiffness matrix-based damping identification

It was seen that the dynamic stiffness matrix-based damping identification was highly vulnerable to
experimental errors. This leads to an obvious question: ‘‘Is the dynamic stiffness matrix method a practically
feasible method?’’ We constructed very simple test set-ups and applied test procedures devised to minimize
both the variance type and bias errors to answer this question.
3.1. Minimizing effects of measurement errors

If a random input testing is used, a large number of spectral averaging can be used to minimize the variance
type errors. Proper selection of sensors and the dynamic range for the data acquisition process will also reduce
the effect of variance errors by improving the S/N ratio. The random input testing method can employ various
time windows, cyclic averaging, and special input force functions like burst random, pseudo-random inputs,
which can minimize leakage errors efficiently.

An exponential window cannot be used with the impact test to reduce the leakage error because it
introduces an artificial damping effect [22]; therefore is not a good choice for the dynamic stiffness matrix-
based damping identification in general. The method can be used if the system is highly damped, as it will be
demonstrated in this paper. Using cyclic averaging may also be a remedy for the leakage effect when working
with lightly damped systems.
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3.2. Application of the improved test procedure

3.2.1. Damped suspended block

In a previous work by the authors [19], a damping matrix was identified on a very simple 2 dof system: a
rigid block suspended by two thin composite beams. The setup in Ozgen and Kim’s work [19] can be
approximated as a rigid mass suspended by two complex springs. The structure is excited with random inputs
at the two ends of the rigid block using two small shakers. Hanning window and cyclic averaging were used to
minimize the leakage error. All diagonal elements of the identified damping matrix Lexp(o) of this two dof
system obtained were positive valued. The off-diagonal elements of the identified damping matrix were
negative valued, which is the expected form of a typical damping matrix of a 2 dof system. Results presented in
Ref. [19] show that identifying the damping matrix from the dynamic stiffness matrix is feasible for a simple
system. The feasibility of the method for a more complicated system is discussed in the following section.

3.2.2. Damped beam

An aluminum beam was constructed to apply the dynamic stiffness matrix-based damping identification to
a more realistic system. The beam has dimensions similar to what Hylok used [18], but damping in the beam
was significantly increased by applying constrained layer damping treatments on both surfaces. Twelve
measurement points were chosen at equally spaced locations along the longitudinal axis of the beam. Pictures
of the setup are shown in Figs. 16(a)–(c). The accelerometers were stud-mounted on aluminum mounts super
glued to the beam surface, placed on both surfaces so that the force can be applied in a symmetric fashion.
Both impact test and random input test were used in this case.
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Fig. 16. Damped aluminum beam—test setup: (a) overall view, (b) close-up view of response measurement points, and (c) beam with

accelerometers.
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3.2.2.1. Impact test. The impact test may be applicable because the system is quite highly damped; therefore
the response is nearly fully observable without using an exponential window. The frequency range is selected
to include the first 3 modes. A 4� 4 subset of the measured FRF matrix corresponding to the first 4 dofs is
shown in Fig. 17, which look quite clean. Fig. 18 shows the spatial plot of the first 4� 4 subset of the
imaginary part of the dynamic stiffness matrix which shows traces of large variance errors. The plot of the
twelve singular values of the FRF matrix is shown in Fig. 19. Having these many singular values, quite a few
singular values are expected to be very small, possibly below the noise floor, which will heavily contaminate
the dynamic stiffness matrix with noise.

To reduce the number of singular values, a 6 dof model is constructed by selecting every other dof from the
initial 12 dofs as shown in Fig. 20. In order to show the improvement over the 12 dof case, the imaginary part
of one of the diagonal elements of the dynamic stiffness matrix of the 6 dof model is plotted in Fig. 21. When
compared to the 12 dof case in Fig. 18, the plot shows a dramatic improvement. The imaginary part is positive
valued at most frequency points and increases linearly as a function of the frequency similar to the viscous
damping case. This improvement can be attributed to the fact that the impact responses were almost fully
observable within the sampling period because of the high damping, which limits the leakage error to make the
impact test acceptable.

Because T ¼ 1/Df, where T is the sampling period and Df is the frequency increment, the sampling period
can be reduced by using a larger frequency increment. In this case, the impact responses do not fully decay out,
causing the leakage error [22]. The number of time points used in a second set of FRF measurements is
reduced this way to 200 from 1600 that was used in the initial impact test. In Fig. 22, the spatial plot of the
imaginary parts of the dynamic stiffness matrices of the two cases (200 and 1600 points) are compared. The
same effect of the leakage on the imaginary parts of the dynamic stiffness matrix observed in the numerical
simulations of Section 2.3.2 is also observed here (for comparison see Figs. 12, 13 and 15).

Note that in Fig. 22 for the leakage-free case (based on measurements with 1600 frequency points), several
spikes are observed at certain frequencies such that diagonal elements of the identified damping matrix
become negative. The frequencies at which these spikes occur can be explained from the singular values of the
FRF matrix shown in Fig. 23. In addition to the three resonant peaks contained in the range, lower singular
values have very small peaks at the frequencies where the damping elements have spikes. These small peaks
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may be associated with the modes that could not be captured by the experiment, for example a torsional mode
although it has to be proved. The effect of these un-captured modes is very small in the FRFs; however
significant in the dynamic stiffness matrix.

3.2.2.2. Random input test. Random input testing is expected to provide a better accuracy for dynamic
stiffness matrix than the impact testing because it is easier to control variance and bias type errors. A square



ARTICLE IN PRESS

0
10-8

10-6

10-4

10-2

Frequency [Hz]

Si
ng

ul
ar

 v
al

ue
s 

100 200 300 400 

Fig. 19. Singular value plots of the FRF matrix of the damped aluminum beam (12 dof experimental model-impact test results).

Selected 6 DOFs 

Fig. 20. The dofs selected among the 12 dof test setup of the damped aluminum beam to construct a reduced size 6 dof experimental

model.

Im
{S

D
66

 (
�

)}
 [

N
/m

]

Frequency [Hz]

0

0

5

x 103

-5

400200

Fig. 21. Sixth diagonal element of the damping matrix (imaginary part of the dynamic stiffness matrix) of the damped aluminum beam

(6 dof experimental model-impact test results).

G.O. Ozgen, J.H. Kim / Journal of Sound and Vibration 320 (2009) 60–8376
FRF matrix can be obtained by the single input–multi-output (SIMO) testing [31], which uses a single shaker
to excite the structure with a similar procedure to the MRIT. However in the case of our test object, the mass
loading caused by the force transducer attached between the shaker stringer and the structure adversely
affected the dynamic stiffness matrix results. FRFs were obtained slightly differently depending on the
excitation point because of the mass loading effect of the shaker. This problem, while it is insignificant in
modal analysis, becomes significant in the dynamic stiffness matrix-based damping identification. The multi-
input–multi-output (MIMO) testing [31] can eliminate this problem.

The MIMO testing was applied using 5 dofs, which were limited by the available shakers. All 12
accelerometers used in the impact testing of the damped beam were kept on the structure to make the system
as close as possible to what was used in the impact testing. The setup is shown in Figs. 24(a)–(c). The singular
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value plots of the FRF matrix in Fig. 25 obtained from the random test show a weak fourth mode around
225Hz, which may be related to an un-measured torsional mode.

In Fig. 26, the spatial plot of the 5� 5 FRF matrix obtained from the random input test is compared with
the corresponding subset of the FRF matrix obtained from the impact test. The comparison shows that the
frequencies of the three major modes obtained by the MIMO test are slightly lower than those obtained by
the impact test, indicating the mass loading effect of the shakers and force transducers. The imaginary part of
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Fig. 24. Test setup for the MIMO testing of the damped aluminum beam: (a) overall view, (b) close-up view of the beam and the shakers,

and (c) close-up view of sensor configuration.
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Fig. 25. Singular value plots of FRF matrix of the damped aluminum beam (5 dof experimental model—MIMO random input test).
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the dynamic stiffness matrix obtained from the impact and random tests are compared in the spatial plot form
in Fig. 27. Imaginary parts of the dynamic stiffness, thus the experimental damping matrices are in a very good
agreement. This indicates that the damping in the system was not significantly affected by the mass loading
effect of the shaker stringers and force transducers. The main difference is observed around the resonance
frequency at 225Hz, which causes sharper peaks in the random test results as seen in Fig. 27.

The damping matrix identified from the random testing shows a significant improvement from the matrix
obtained from the impact testing. The random input test result shows a smoother and more linear frequency
distribution without the distortion, a sign of leakage error.

3.2.2.3. Validation of the identified damping matrix Lexp(o). In order to verify the accuracy of the
experimental procedure, the damping matrix of the damped beam obtained by using the dynamic stiffness
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matrix method and the damping matrix obtained by another method (inverse approach) are compared. The
inverse approach assumes that the system is proportionally damped; therefore [32]:

wTCw ¼

2x1O1M1 0 0

0 . .
.

0

0 0 2xNONMN

2
664

3
775, (12)

where xi is the damping ratio, Mi is the modal mass, and Xi is the undamped modal frequency of the ith mode.
Pre- and post-multiplying Eq. (12) by (wT)�1 and (w)�1, the damping matrix C is obtained as follows:

C ¼ ðwT
Þ
�1

2x1O1M1 0 0

0 . .
.

0

0 0 2xNONMN

2
664

3
775ðwÞ�1. (13)

In this equation, the damping ratios (xI’s) should be obtained from experiments while modal masses (Mi’s)
and the undamped modal frequencies (OI’s) may be obtained either experimentally or analytically. Eq. (13)
can be used only when w is a square matrix; therefore, the number of the modes and dofs of the experimental
model should be equal.

The proportional damping matrix estimated for the damped beam using Eq. (13) can be used to compute
the imaginary part of dynamic stiffness matrix of the system, which is simply equal to oC. This damping
matrix distribution can then be directly compared to Lexp(o), the damping matrix obtained from the dynamic
stiffness matrix-based approach. Damping matrix comparison as described will be made for the 5 dof
experimental model of the damped beam which was used in Section 3.2.2.2. As we need a square modal matrix
to utilize Eq. (13), we need the first five modes of the system. The measured system is a free–free beam and the
first two modes are rigid body modes with near-zero frequencies, which usually cannot be extracted from the
FRF data. Because of the lack of modal information for all five modes, Eq. (13) cannot be utilized based on
the modal information obtained solely from experimental modal analysis. In this case, modal masses and
modal frequencies will have to be obtained from the mass and stiffness matrices of the 5 dof experimental
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model while modal damping ratios will have to be obtained from modal analysis of the experimental FRF
data. For the mass and stiffness matrices, we use Mexp and Kexp,, the mass and stiffness matrices obtained also
from experiment, which are:

Kexp

Mexp

" #
2M�M

¼

I �o2
1I

I �o2
2I

: :

: :

I �o2
kI

2
6666664

3
7777775

þ

kM�2M

Real½Hexpðo1Þ
�1
�

Real½Hexpðo2Þ
�1
�

:

:

Real½HexpðokÞ
�1
�

2
66666664

3
77777775

kM�M

, (14)

where ‘‘+’’ represents the pseudo-inverse of the matrix.
Mexp and Kexp of the 5 dof experimental model of the damped beam obtained from Eq. (14) are given in

Tables 3 and 4, respectively. Modal damping ratios for the same experimental configuration are found as
0.013, 0.012 and 0.013 for the first three structural modes at frequencies 443.6, 1203.8 and 2329.3 rad/s,
respectively. As the two rigid body modes are not identifiable, a modal damping ratio of 0.01 was taken for
these two modes. Using the experimental system matrices Mexp and Kexp, modal masses Mi’s and undamped
modal frequencies OI’s are computed. Finally Eq. (13) can be used to calculate the proportional damping
matrix Cexp, which is the damping matrix identified in the conventional way assuming proportional damping.
This proportional damping matrix is shown in Table 5.

Comparison of oCexp and the imaginary part of Lexp(o) obtained from the dynamic stiffness matrix-based
approach can be seen in Fig. 28. The results compare well in terms of the magnitude while the actual



ARTICLE IN PRESS

Table 3

Identified mass matrix (kg)

0.0474 0.0201 �0.0021 0.0005 0.0005

0.0195 0.1261 �0.0299 0.0010 0.0025

�0.0064 �0.0248 0.1145 0.0105 �0.0078

0.0023 �0.0025 0.0083 0.1142 0.0182

�0.0009 0.0035 �0.0095 0.0171 0.0483

Table 4

Identified stiffness matrix (N/m)

21,315 �61,106 46,325 �7267 1203

�59,365 220,804 �218,592 69,037 �11,769

45,125 �219,908 278,144 �137,030 33,624

�7214 69,359 �136,535 115,487 �40,054

1426 �12,398 34,907 �41,706 17,564

Table 5

Identified proportional damping matrix (N s/m)

0.456 �0.722 0.244 0.051 0.061

�0.722 2.855 �2.485 0.456 0.033

0.244 �2.485 3.716 �1.584 0.188

0.051 0.456 �1.584 1.889 �0.683

0.061 0.033 0.188 �0.683 0.433
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distributions are obviously different because the actual damping is not proportional. This comparison serves
as a qualitative validation of the accuracy of the dynamic stiffness-based damping identification.
4. Summary and conclusion

Among various approaches proposed to obtain damping matrices based on experimental measurement, the
dynamic stiffness matrix (DSM)-based damping identification method proposed by Lee and Kim [17] is
attractive because it has a very simple algorithm and does not use any unfounded assumptions or
simplifications. However, it was observed that the damping matrices identified by the method showed
unexpected forms with traces of large experimental errors. In this work, the sources of this problem are
investigated and an improved experimental procedure is developed.

The dynamic stiffness matrix-based approach finds the damping matrix from the dynamic stiffness matrix of
the system, which is obtained by inverting the measured FRF matrix. It is shown that variance errors in the
measured FRFs are greatly magnified in the inversion process, heavily contaminating the identified damping
matrix. It is shown that the effect of the variance error on the damping matrix can be related to the lowest
singular values of the FRF matrix, in turn the dofs of the experimental model; therefore the smaller the
measurement dofs are, the smaller the variance error becomes. This indicates that the size of dofs has to be
selected in the measurement as a compromise between the needs for the spatial resolution and the accuracy of
the damping matrix. A model expansion method developed previously by the authors [28] partially relaxes this
dilemma because it can expand the identified damping matrix to a larger size. Observing the patterns of
identified damping matrices in previous works indicates the existence of an error of different type in addition
to the more obvious variance error. A hypothesis is made that this additional error is the leakage error in the
FRF measurement, which is confirmed by numerical simulations of lumped parameter systems and a finite
element analysis model.
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Fig. 28. Spatial plot of the imaginary part of the dynamic stiffness matrix of the damped aluminum beam (5 dof experimental model):

——, dynamic stiffness-based method; , inverse method for proportionally damped systems.
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The MIMO random input test is the experiment of choice for the dynamic stiffness matrix approach because
it enables minimizing both variance and leakage type errors. An experimental procedure based on the MIMO
test was previously applied to a very simple experimental set-up composed of only 2 dofs to verify the
practicality of the dynamic stiffness matrix approach [19]. In this previous work [19], the damping matrix was
obtained in a well-expected form with a trace of only modest variance errors. In this current study, the
procedure is also applied to a more realistic system, a cantilever beam described by five measurement dofs,
which identifies the damping matrix in a well-explainable form. These experiments suggest that the dynamic
stiffness matrix-based approach can be a practical option in modeling dynamic systems.

Simple damping models have been used for a long time because not only there was no alternative but also
they offered acceptable accuracy for most engineering tasks. Therefore, it will be an interesting task to find
specific types of problem in that an accurate damping matrix description is crucial. Interestingly, such a study
has never been conducted while numerous efforts have been reported about developing damping matrix
formulation. Developing measurement techniques to further reduce the variance error is another necessary
and more obvious future task, which will expand the practicality of the dynamic stiffness matrix-based
method.
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